Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; : 142296, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38729440

RESUMO

While plant toxicity reduction remains the primary metric for judging the success of metal immobilization in soil, the suitability of microorganisms as universal indicators of its effectiveness in various contaminated soils remains a point of contention. This study assessed the sensitivity of microbial bioindicators in monitoring metal immobilization success in smelter-impacted soils. It compared plants and microorganisms as indicators of the efficiency of natural Fe-Mn nodules from the Gulf of Finland in immobilizing metals in soils contaminated by a Ni/Cu smelter, on the Kola Peninsula, Murmansk region, Russia. Perennial ryegrass (Lolium perenne) was grown on nodule-amended and control soils. Plant responses in the smelter-impacted soils proved to be sensitive and robust indicators of successful metal immobilization. However, microbial responses exhibited a more complex story. Despite the observed reductions in soluble metal concentrations, shoot metal contents in ryegrass, and significant improvements in plant growth, certain microbial bioindicators were unresponsive to metal immobilization success brought about by the addition of Fe-Mn nodules. Among microbial bioindicators studied, community-level physiological profiling, microbial biomass carbon, and basal respiration were sensitive indicators of metal immobilization success, whereas the number of saprotrophic, oligotrophic, and Fe-oxidizing bacteria and fungi, the biomass of bacteria and fungi, and enzymatic activity were less robust indicators. Interestingly, the correlations between different microbial responses measured were weak or even negative. Some microbial responses also exhibited negative correlations with plant biomass. These findings underscore the need for further research on comparative evaluations of plants and microorganisms as reliable indicators of metal immobilization efficacy in polluted environments.

2.
Toxics ; 11(12)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38133358

RESUMO

The possibility of plants growing on serpentine soils and the ability of serpentine minerals to accumulate significant amounts of metals was the basis for developing a method for using serpentine-containing materials to restore vegetation in areas with a high level of metal pollution. Serpentine-containing products obtained from phlogopite mining overburden (Kovdor, Murmansk region, Russia) with and without thermal activation were used in a field experiment on the remediation of industrially polluted peat soil. According to the geochemical mobility of the components, one of four fractions was allocated depending on the acidic (HCl) concentration of the solution used for the material treatment: readily mobile (0.001 mol/L), mobile (0.01 mol/L), potentially mobile (0.1 mol/L), and acid-soluble (1.0 mol/L). This study showed that the addition of serpentinites to peat soil changed the fraction composition. The most significant changes were noted for serpentinite components such as Ca and Mg: their concentrations increased 2-3 times even in the smallest portion of serpentine material. On the contrary, the contents of metals in the readily mobile fraction decreased 3-18, 3-23, 5-26, and 2-42 times for Cu, Ni, Fe, and Al, respectively. The main factor causing the decrease in metal mobility was the pH rise due to the release of Ca and Mg compounds into the soil solution. This study showed that the addition of serpentine-containing material at 25 vol.% to peat soil was sufficient to create a geochemical barrier with a stable-functioning vegetation cover. All serpentine-containing materials are recommended for the remediation of large industrially polluted areas.

3.
Environ Geochem Health ; 45(1): 67-83, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35412214

RESUMO

Heat-treated serpentine products from mining wastes have been examined to remediate highly contaminated soil with total concentration of Cu 10470 mg/kg and Ni 5300 mg/kg. The series of laboratory and field experiments (for 10 years) were conducted. The modified Tessier method was used to assess the metals geochemical mobility. The effect of hydration on the chemical stability of the components and sorption properties of thermally activated serpentine were studied. The hydration of heat-treated serpentine decreased the leaching of the main components (Mg and Si) that indicates their partial binding in a newly formed compound-magnesium silicate. Hydration of heat-treated serpentine did not lead to the changes in the phase composition and the geochemical mobility of the precipitated Ni and Cu compounds. The hydration affected the sorption value at the 1 day of the interaction but after 30 days this difference partially leveled. A laboratory experiment showed that thermally activated serpentine was effective for the Cu and Ni sorption from sulfate solutions. The substantial changes in chemical properties of soil mixtures after ten years of the field experiment were found. In the first year of the field experiment, the pH values of soil mixtures were alkaline (9.4-9.9) and were significantly higher compared to the pH 4.0 of the initial peat soil. Over 10 years, the soil pH at the experimental sites gradually decreased and reached values of 7.2-8.6. The introduction of thermoactivated serpentines led to a decrease in the share of the most mobile exchangeable fraction. The most noticeable effect of thermoactivated serpentines on metal mobility in the polluted peat soil revealed for Cu; its migration coefficient decreased from 1.8 in the peat soil to 0.7 in the mixtures with heat-treated serpentines. The sum of Cu mobile fractions in the experimental variants became lower compared with initial peat by 50-70%, while Fe was lower by 30%, and Zn-by 80%. The increase in the proportion of the most strongly bound fraction was observed for all metals in the experimental variants compared with initial soil. The coefficient of metal accumulation for Ni and Cu was significantly lower than 1, indicating protective mechanisms in plants. The high content of mobile Mg and Ca compounds seems to be the determining factor in this process. The grass communities forming in the 10-years experiment showed high productivity and stability even under constant airborne industrial pollution. The thermally activated serpentine minerals can be recommended for the in situ remediation of landscapes with completely lost vegetation during the long-term impact of industrial emissions.


Assuntos
Metais Pesados , Poluentes do Solo , Níquel/análise , Cobre/análise , Solo/química , Poluentes do Solo/análise , Metais , Metais Pesados/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...